Converting Binary (base 2) to Denary (base 10)

Say we are converting the binary number 11010110 into denary; add the following headings over each number:

128	64	32	16	8	4	2	1
1	1	0	1	0	1	1	0

Then simply multiply to find the total:

$$
(1 \times 128)+(1 \times 64)+(0 \times 32)+(1 \times 16)+\ldots=\underline{214}
$$

Converting Denary (base 10) to Binary (base 2)

The reverse process is to take out the largest number (power of 2) you can, like this:

214 - can we take out $128 ?$	Yes	1	Remainder $=86$
$86-$ can we take out $64 ?$	Yes	1	Remainder $=22$
22 - can we take out $32 ?$	No	0	Remainder $=22$
$22-$ can we take out $16 ?$	Yes	1	Remainder $=6$
$6-$ can we take out $8 ?$	No	0	Remainder $=6$
$6-$ can we take out $4 ?$	Yes	1	Remainder $=2$
$2-$ can we take out $2 ?$	Yes	1	Remainder $=0$
$0-$ can we take out $1 ?$	No	0	Remainder $=0$

Answer $=\underline{11010110}$

Converting Binary (base 2) to Hexadecimal (base 16)

Say we are converting the binary number 11010110 into hexadecimal; split the number into two 4-bit nibbles and convert them into denary (if the number does not have the right number of digits, simply add zeros to the LHS).

$$
1101=13 \quad 0110=6
$$

Then, convert each denary number into a single hex digit (where $10=\mathrm{A}, 11=$ $\mathrm{B}, 12=\mathrm{C}, 13=\mathrm{D}, 14=\mathrm{E}, 15=\mathrm{F}$)
$13=\mathrm{D}$
$6=6$

Therefore:

$$
\underline{11010110=\text { D6 }}
$$

Converting Hexadecimal (base 16) into Binary (base 2)

Lets convert D6 back into binary. First convert each hex digit in to a denary number and then convert that into binary:

$$
\begin{aligned}
& \text { D6 }=136 \\
& 13=(1 \times 8)+(1 \times 4)+(0 \times 2)+(1 \times 1)=1101 \\
& 6=(0 \times 8)+(1 \times 4)+(1 \times 2)+(0 x 1)=0110
\end{aligned}
$$

Therefore:

Adding binary numbers

Lets add 01101010 to 00101101
Note: $=106+45=151$

First, write them out like this:

01101010
$\underline{00101101+}$

Just like denary adding, add the two digits together and carry the 1 if necessary:

01101010
$00101101+$
11
01101010
$\underline{00101101+}$
111

$0 \stackrel{1}{1} 10^{1} 1010$
$00101101+$ 010111
$\begin{array}{lll}1 & 1 & 1\end{array}$
01101010
+00101101+

111
01101010
$00101101+$
10010111
Note: $=151$

AQA AS Computing

Negative binary numbers - 2s complement

With 8 bits we can store any positive integer from 0 to 255 . But what about negative integers?

The answer is to change the range from -128 to +127 , using the first bit to indicate the sign; thus 1000000 would indicate that the number is negative and the lowest possible number (-128) and 01111111 would be both postivie and the highest possible number (+127).

This means that all the positive numbers still work as expected (simply ignoring the leading 0) and you don't end up with two 0 value (positive 0 and negative 0).

To convert a negative denary number into binary using 2s complement

- Convert the positive number into binary
- Invert each bit
- Add 1
e.g. -127
e.g. - -37

Convert to binary: 01111111
Convert to binary: 00100101
Invert each bit: 10000000
Add 1: 10000001
Invert each bit: 11011010

Add 1:
11011011

To convert a negative binary number into denary using 2 s complement
Simply reverse the process:
e.g. 10000001
$\begin{array}{llll}\text { Subtract 1: } & 10000000 & \text { Subtract 1: } & 11011010 \\ \text { Invert each bit: } & 01111111 & \text { Invert each bit: } & 00100101 \\ \text { Convert to denary: } & -127 & \text { Convert o denary } & -37\end{array}$
e.g. 11011011

Subtracting binary numbers

Rather than subtracting a positive number, try adding a negative number.

$$
+106-+45=+106+-45
$$

Lets work out 0110 1010-00101101

$$
\text { Note: }=106-45=61
$$

First, use the 2s complement to invert the second number:

$$
-00101101=+(11010010+1)=11010011
$$

Then do the addition:

$$
\begin{array}{r}
011101010 \\
111010011 \\
100111101
\end{array}+
$$

Discard any leading digits (remember the first digit just indicates the sign - +/-)

$$
00111101=61
$$

