
AQA AS Computing Representing Data

Converting Binary (base 2) to Denary (base 10)

Say we are converting the binary number 1101 0110 into denary; add the following
headings over each number:

128 64 32 16 8 4 2 1

1 1 0 1 0 1 1 0

Then simply multiply to find the total:

(1x128) + (1x64) + (0x32) + (1x16) + … = 214

Converting Denary (base 10) to Binary (base 2)

The reverse process is to take out the largest number (power of 2) you can, like this:

214 – can we take out 128? Yes 1 Remainder = 86

86 – can we take out 64? Yes 1 Remainder = 22

22 – can we take out 32? No 0 Remainder = 22

22 – can we take out 16? Yes 1 Remainder = 6

6 – can we take out 8? No 0 Remainder = 6

6 – can we take out 4? Yes 1 Remainder = 2

2 – can we take out 2? Yes 1 Remainder = 0

0 – can we take out 1? No 0 Remainder = 0

Answer = 1101 0110

AQA AS Computing Representing Data

Converting Binary (base 2) to Hexadecimal (base 16)

Say we are converting the binary number 1101 0110 into hexadecimal; split the
number into two 4-bit nibbles and convert them into denary (if the number does not
have the right number of digits, simply add zeros to the LHS).

1101 = 13 0110 = 6

Then, convert each denary number into a single hex digit (where 10 = A, 11 =
B, 12 = C, 13 = D, 14 = E, 15 = F)

13 = D 6 = 6

Therefore:

 1101 0110 = D6

Converting Hexadecimal (base 16) into Binary (base 2)

Lets convert D6 back into binary. First convert each hex digit in to a denary number
and then convert that into binary:

D6 = 13 6

13 = (1x8) + (1x4) + (0x2) + (1x1) = 1101

6 = (0x8) + (1x4) + (1x2) + (0x1) = 0110

Therefore:

 D6 = 1101 0110

AQA AS Computing Representing Data

Adding binary numbers

Lets add 0110 1010 to 00101101 Note: = 106 + 45 = 151

First, write them out like this: 0 1 1 0 1 0 1 0
 0 0 1 0 1 1 0 1 +

Just like denary adding, add the two digits together and carry the 1 if necessary:

 0 1 1 0 1 0 1 0
 0 0 1 0 1 1 0 1 +
 1

 0 1 1 0 1 0 1 0
 0 0 1 0 1 1 0 1 +
 1 1

 0 1 1 0 1 0 1 0
 0 0 1 0 1 1 0 1 +
 1 1 1

 1

 0 1 1 0 1 0 1 0
 0 0 1 0 1 1 0 1 +
 0 1 1 1

 1

 0 1 1 0 1 0 1 0
 0 0 1 0 1 1 0 1 +
 1 0 1 1 1

 1 1

 0 1 1 0 1 0 1 0
 0 0 1 0 1 1 0 1 +
 0 1 0 1 1 1

 1 1 1

 0 1 1 0 1 0 1 0
 0 0 1 0 1 1 0 1 +
 0 0 1 0 1 1 1

 1 1 1

 0 1 1 0 1 0 1 0
 0 0 1 0 1 1 0 1 +
 1 0 0 1 0 1 1 1 Note: = 151

AQA AS Computing

Representing Data

Negative binary numbers – 2s complement

With 8 bits we can store any positive integer from 0 to 255. But what about negative
integers?

The answer is to change the range from -128 to +127, using the first bit to indicate the
sign; thus 1000 000 would indicate that the number is negative and the lowest
possible number (-128) and 0111 1111 would be both postivie and the highest
possible number (+127).

This means that all the positive numbers still work as expected (simply ignoring the
leading 0) and you don’t end up with two 0 value (positive 0 and negative 0).

To convert a negative denary number into binary using 2s complement

• Convert the positive number into binary
• Invert each bit
• Add 1

e.g. -127

Convert to binary: 0111 1111
Invert each bit: 1000 0000
Add 1: 1000 0001

e.g. -37

Convert to binary: 0010 0101
Invert each bit: 1101 1010
Add 1: 1101 1011

To convert a negative binary number into denary using 2s complement

Simply reverse the process:

e.g. 1000 0001

Subtract 1: 1000 0000
Invert each bit: 0111 1111
Convert to denary: -127

e.g. 1101 1011

Subtract 1: 1101 1010
Invert each bit: 0010 0101
Convert o denary -37

AQA AS Computing Representing Data

Subtracting binary numbers

Rather than subtracting a positive number, try adding a negative number.
+106 - +45 = +106 + -45

Lets work out 0110 1010 - 00101101 Note: = 106 - 45 = 61

First, use the 2s complement to invert the second number:

-0010 1101 = +(1101 0010 + 1) = 1101 0011

Then do the addition:

0 1 1 0 1 0 1 0
1 1 0 1 0 0 1 1 +

 1 0 0 1 1 1 1 0 1

Discard any leading digits (remember the first digit just indicates the sign - +/-)

 0011 1101 = 61

